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Co-crystal structures of 4,7-phenanthroline and carboxylic acids:
synthon competition and prediction
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Abstract—Co-crystal formation of 4,7-phenanthroline and various carboxylic acids allows a study of the effect of supramolecular
synthon competition. © 2002 Elsevier Science Ltd. All rights reserved.

The ultimate goal of crystal engineering is to pre-design
solid-state structures based only on a knowledge of
molecular structure.1,2 The supramolecular synthon
approach, in which desired supermolecules are formed
and/or assembled using previously identified robust
intermolecular interactions, is advantageous in that it
offers a considerable simplification in the design of
crystal structures.3 In the co-crystal structures of car-
boxylic acids with 4,4�-bipyridine and phenazine, for
example, O�H···N strong hydrogen bonds and weak
C�H···O interactions create synthons I and II, respec-
tively (Scheme 1).4 For other bases (building blocks),
however, a competition between choices of synthon
may arise. In the case of 4,7-phenanthroline (Ph),5

for example, hydrogen atoms on two chemically differ-
ent sp2 C atoms can be used to form C�H···O
interactions (Scheme 1), giving rise to either synthon I
or II. A search of the Cambridge Structural Database

(CSD)6 reveals that no organic Ph co-crystal structure
has been reported to date, so that the preference for
synthon I or II in carboxylic acid/Ph co-crystals is
unknown.

A semi-empirical quantum mechanical calculation to
determine the preferred synthon in carboxylic acid/Ph
co-crystals was therefore undertaken. The AM1
approximation, successfully used elsewhere in studies of
hydrogen bond arrangements in organic complexes,
was adopted.7 In order to simplify the calculation, a
model structure of oxalic acid (OA) and Ph (OA+Ph)
was built and geometrically optimised, using the
Cerius2 program.8 Several restraints were applied: (1)
both molecules were constrained to be planar; (2) the
H-bond angle of the strong O�H···N interactions was
fixed at 180°, with the value of the O···N distances
varying between 2.45 and 3.25 A� ; (3) the angle between

Scheme 1.
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two molecules (�) was fixed at 0° (synthon I), 90 or
180° (synthon II), as shown in Scheme 2. Hydrogen-
bonding energies (HBE) were calculated for each possi-
ble supramolecular entity using the MOPAC
interface9—details are given in Table 1.10 For all three
values of �, an increase in the O···N distances results in
the HBE values decreasing. Only small HBE differ-
ences, for the same O···N distances, are observed
between formation of �=0° (synthon I) and that of
�=90°, while the HBE for �=180° (synthon II) sug-
gests that this arrangement is significantly less stable.

Synthon I, therefore, would appear to be thermody-
namically preferred over synthon II in carboxylic acid/
Ph co-crystal structures.

To compare the theoretical prediction with actual crys-
tal structures, an aliphatic dicarboxylic acid, OA, an
aromatic dicarboxylic acid, terephthalic acid (TA), as
well as a tricarboxylic acid, cis, cis-cyclohexane-1,3,5-
tricarboxylic acid (CTA), were each separately co-crys-
tallized with Ph. The resulting co-crystals, OA·Ph,
TA·Ph (both molar ratio 1:1) and CTA·2Ph (molar
ratio 1:2), were obtained by slow evaporation at room
temperature from a 1:1 acid/Ph solution in dimethylsul-
foxide (DMSO), tetrahydrofuran (THF) and methanol,
respectively (Scheme 1).

In agreement with the HBE calculation, all acids and
bases interact via synthon I. In the structure of
OA·Ph,11 zigzag tapes are formed via synthon I, involv-
ing O�H···N and C�H···O interactions [O···N, H···N,
O�H···N: 2.657(4), 1.64 A� , 175.8°; C···O, H···O,
C�H···O: 3.259(4), 2.49 A� , 127.3°].12,13 The torsion
angle between carboxylic acid group and aromatic ring
is ca. 12.8°. Fig. 1 shows the supramolecular sheets
formed by the linkage of adjacent tapes. Zigzag
supramolecular tapes formed using synthon I also exist
in the structure of TA·Ph [O···N, H···N, O�H···N (x−
0.5, y, −z+0.5): 2.724(2), 1.71 A� , 171°; C···O, H···O,
C�H···O (x+0.5, y, −z+0.5): 3.234(3), 2.59 A� , 117°]. In
TA, the torsion angle between the carboxylic acid
group and the aromatic ring (C�O�N�C) is ca. 38.5°,
and results in significantly buckled infinite supramolec-
ular sheets, generated by inter-tape C�H···O hydrogen
bonds. In the structure of CTA·2Ph, the three car-
boxylic acid groups on the CTA molecule interact with
three Ph molecules using synthon I. With the linkage of
synthon I, a two-acid–four-base unit is produced and
adopts a ‘chair’ conformation (Fig. 2). These
supramolecular units pack forming stacks along the
a-axis in a close packed manner. These three structures,
therefore, support the idea that synthon I is indeed
preferred to synthon II in these acid:base co-crystals.

Scheme 2.

Table 1. Hydrogen-bonding energies (HBE) of oxalic acid/
Ph dimers (kcal/mol) (OA+Ph)

DO···N (A� ) �Heat of formation �Heat of �Heat of formation
formation

0° (synthon I)� 90° 180° (synthon II)

82.38910.1378.2672.45
3.6162.55 5.493 58.793

2.65 0.639 2.427 41.377
2.75 −1.079 0.576 28.488

−1.9612.85 −0.457 18.812
−1.0162.95 11.486−2.369
−1.3393.05 6.04−2.551

2.203−1.5513.15 −2.637
3.25 −2.67 −1.694 −0.287

Figure 1. Projection onto (100) showing the supramolecular sheet in the structure of OA·Ph involving synthon I.
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Figure 2. Projection onto (100) showing the two-acid-four-base unit in the structure of CTA·2Ph. These units stack along the
a-axis in a close packed manner.

The crystal structure of Ph with 1,4-naphthalenedicar-
boxylic acid (NDA) has also been studied. Interestingly,
when co-crystals of NDA and Ph (NDA·2Ph) are
obtained by slow evaporation at room temperature
from a 1:1 (acid:base) molar ratio solution in N,N �-
dimethylformamide (DMF), synthon II is observed
with one carboxylic acid group [O···N, H···N, O�H···N:
2.649(2), 1.64 A� , 173°; C···O, H···O, C�H···O: 3.319(2),
2.62 A� , 122°], whilst the other carboxylic acid group
adopts synthon I [O···N, H···N, O�H···N (−x, −y+2,
−z+1): 2.626(2), 1.62 A� , 169°; C···O, H···O, C�H···O
(−x, −y+2, −z+1): 3.638(2), 3.21 A� , 105°] (Fig. 3).

In order to rationalise the presence of synthon II in
NDA·2Ph, further AM1 calculations were carried out
using models of TA+Ph, CTA+Ph and NDA+Ph, with
similar criteria to those used in the case of OA+Ph.
For TA and CTA molecular pairs, similar results to
that of OA+Ph were obtained. In the case of NDA+Ph,
however, for the same O···N distances, smaller HBE
differences are observed in all cases between models
of �=0° (synthon I) and �=180° (synthon II) in
NDA+Ph (Table 2). This would suggest that, in the
case of NDA·2Ph, the energy difference between syn-

thon I and II is likely to be less important during
crystallization.

We are not aware of a systematic study having been
made of the choice of supramolecular arrangement
among two or more possible synthons with the same
functional groups, and we describe this as synthon
competition. In this study, the hydrogen bond arrange-
ments adopted in the majority of carboxylic acid/Ph
crystal structures, synthon I, can be regarded as the
result of synthon competition. The actual results of the
various competing synthon units determine the specific
geometry of supramolecular assemblies in the structures
and hence the overall packing arrangements. Our
results, furthermore, demonstrate good agreement
between experiment and calculation, suggesting that the
AM1 approximation can be a practical way to predict
the results of synthon competition.
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Table 2. Hydrogen-bonding energies (HBE) of 1,4-naphthalenedicarboxylic acid/Ph pairs (kcal/mol) (NDA+Ph)a
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